Research
Myelodysplastic syndrome (MDS) is a myeloid neoplasm associated with complex clonal architecture. The application of single-cell sequencing is capable of revealing the clonal dynamics of MDS during disease progression and treatment resistance. This has advantages over bulk-tumor sequencing which is limited by its resolution. In this study, we evaluated two patients with MDS for the clonal dynamics of pathogenic mutations at the single-cell level of disease progression and resistance to hypomethylating agents (HMAs). There were two key observations. First, changes in the clonal heterogeneity of the pathogenic FLT3-ITD, IDH2, EZH2, or GATA2 mutations was associated with disease progression and resistance to HMA. Secondly, disease progression and resistance to HMA was accompanied by the acquisition of copy number variations of DNMT3A, TET2, and GATA2.